Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 90
1.
Front Neurosci ; 18: 1396978, 2024.
Article En | MEDLINE | ID: mdl-38726028

Introduction: Chemogenetic techniques, specifically the use of Designer Receptors Exclusively Activated by Designer Drugs (DREADDs), have become invaluable tools in neuroscience research. Yet, the understanding of how Gq- and Gicoupled DREADDs alter local field potential (LFP) oscillations in vivo remains incomplete. Methods: This study investigates the in vivo electrophysiological effects of DREADD actuation by deschloroclozapine, on spontaneous firing rate and LFP oscillations recorded from the anterior cingulate cortex in lightly anesthetized male rats. Results: Unexpectedly, in response to the administration of deschloroclozapine, we observed inhibitory effects with pan-neuronal hM3D(Gq) stimulation, and excitatory effects with pan-neuronal hM4D(Gi) stimulation in a significant portion of neurons. These results emphasize the need to account for indirect perturbation effects at the local neuronal network level in vivo, particularly when not all neurons express the chemogenetic receptors uniformly. In the current study, for instance, the majority of cells that were transduced with both hM3D(Gq) and hM4D(Gi) were GABAergic. Moreover, we found that panneuronal cortical chemogenetic modulation can profoundly alter oscillatory neuronal activity, presenting a potential research tool or therapeutic strategy in several neuropsychiatric models and diseases. Discussion: These findings help to optimize the use of chemogenetic techniques in neuroscience research and open new possibilities for novel therapeutic strategies.

2.
bioRxiv ; 2024 Mar 17.
Article En | MEDLINE | ID: mdl-38559177

Alzheimer's disease is a neurodegenerative disorder characterized by progressive amyloid plaque accumulation, tau tangle formation, neuroimmune dysregulation, synapse an neuron loss, and changes in neural circuit activation that lead to cognitive decline and dementia. Early molecular and cellular disease-instigating events occur 20 or more years prior to presentation of symptoms, making them difficult to study, and for many years amyloid-ß, the aggregating peptide seeding amyloid plaques, was thought to be the toxic factor responsible for cognitive deficit. However, strategies targeting amyloid-ß aggregation and deposition have largely failed to produce safe and effective therapies, and amyloid plaque levels poorly correlate with cognitive outcomes. However, a role still exists for amyloid-ß in the variation in an individual's immune response to early, soluble forms of aggregates, and the downstream consequences of this immune response for aberrant cellular behaviors and creation of a detrimental tissue environment that harms neuron health and causes changes in neural circuit activation. Here, we perform functional magnetic resonance imaging of awake, unanesthetized Alzheimer's disease mice to map changes in functional connectivity over the course of disease progression, in comparison to wild-type littermates. In these same individual animals, we spatiotemporally profile the immune milieu by measuring cytokines, chemokines, and growth factors across various brain regions and over the course of disease progression from pre-pathology through established cognitive deficit. We identify specific signatures of immune activation predicting hyperactivity followed by suppression of intra- and then inter-regional functional connectivity in multiple disease-relevant brain regions, following the pattern of spread of amyloid pathology.

3.
Res Sq ; 2024 Jan 10.
Article En | MEDLINE | ID: mdl-37645880

Resting-state brain networks (RSNs) have been widely applied in health and disease, but their interpretation in terms of the underlying neural activity is unclear. To systematically investigate this cornerstone issue, here we simultaneously recorded whole-brain resting-state functional magnetic resonance imaging (rsfMRI) and electrophysiology signals in two separate brain regions in rats. Our data show that for both recording sites, band-specific local field potential (LFP) power-derived spatial maps can explain up to 90% of the spatial variance of RSNs obtained by the rsfMRI signal. Paradoxically, the time series of LFP band power can only explain up to 35% of the temporal variance of the local rsfMRI time course from the same site. In addition, regressing out time series of LFP power from rsfMRI signals has limited impact on the spatial patterns of rsfMRI-based RSNs. This disparity in the spatial and temporal relationships between resting-state electrophysiology and rsfMRI signals suggest that the electrophysiological activity alone does not account for all effects in the rsfMRI signal. To further interpret this disparity, we propose a model hypothesizing that a significant component in the rsfMRI signal is driven by electrophysiology-invisible neural activities that are active in neurovascular coupling. Temporally, this electrophysiology-invisible signal is weakly correlated to electrophysiology data. However, as signaling of these two types of neural activities are both constrained by the same anatomical backbone, they can generate similar RSN spatial patterns. These data and the model provide a new perspective of our interpretation of RSNs.

4.
bioRxiv ; 2023 Nov 11.
Article En | MEDLINE | ID: mdl-37986863

Understanding brain-wide hemodynamic responses to different stimuli at high spatiotemporal resolutions can help study neuro-disorders and brain functions. However, the existing brain imaging technologies have limited resolution, sensitivity, imaging depth and provide information about only one or two hemodynamic parameters. To address this, we propose a multimodal functional ultrasound and photoacoustic (fUSPA) imaging platform, which integrates ultrafast ultrasound and multispectral photoacoustic imaging methods in a compact head-mountable device, to quantitatively map cerebral blood volume (CBV), cerebral blood flow (CBF), oxygen saturation (SO2) dynamics as well as contrast agent enhanced brain imaging with high spatiotemporal resolutions. After systematic characterization, the fUSPA system was applied to quantitatively study the changes in brain hemodynamics and vascular reactivity at single vessel resolution in response to hypercapnia stimulation. Our results show an overall increase in brain-wide CBV, CBF, and SO2, but regional differences in singular cortical veins and arteries and a reproducible anti-correlation pattern between venous and cortical hemodynamics, demonstrating the capabilities of the fUSPA system for providing multiparametric cerebrovascular information at high-resolution and sensitivity, that can bring insights into the complex mechanisms of neurodiseases.

5.
Psychopharmacology (Berl) ; 240(12): 2459-2482, 2023 Dec.
Article En | MEDLINE | ID: mdl-37857897

Opioid use results in thousands of overdose deaths each year. To address this crisis, we need a better understanding of the neurobiological mechanisms that drive opioid abuse. The noninvasive imaging tools positron emission tomography (PET), functional magnetic resonance imaging (fMRI), and manganese-enhanced magnetic resonance imaging (MEMRI) can be used to identify how brain activity responds to acute opioid exposure and adapts to chronic drug treatment. These techniques can be performed in humans and animal models, and brain networks identified in animals closely map to the human brain. Animal models have the advantage of being able to systematically examine the independent effects of opioid exposure in a controlled environment accounting for the complex factors that drive opioid misuse in humans. This review synthesizes literature that utilized noninvasive neuroimaging tools (PET, fMRI, and MEMRI) measuring brain activity correlates in animals to understand the neurobiological consequences of exposure to abused opioids. A PubMed search in September 2023 identified 25 publications. These manuscripts were divided into 4 categories based on the route and duration of drug exposure (acute/chronic, active/passive administration). Within each category, the results were generally consistent across drug and imaging protocols. These papers cover a 20-year range and highlight the advancements in neuroimaging methodology during that time. These advances have enabled researchers to achieve greater resolution of brain regions altered by opioid exposure and to identify patterns of brain activation across regions (i.e., functional connectivity) and within subregions of structures. After describing the existing literature, we suggest areas where additional research is needed.


Behavior, Addictive , Opioid-Related Disorders , Animals , Humans , Analgesics, Opioid/therapeutic use , Neuroimaging/methods , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Opioid-Related Disorders/drug therapy
6.
Commun Biol ; 6(1): 738, 2023 07 17.
Article En | MEDLINE | ID: mdl-37460780

In the adult sensory cortex, increases in neural activity elicited by sensory stimulation usually drive vasodilation mediated by neurovascular coupling. However, whether neurovascular coupling is the same in neonatal animals as adults is controversial, as both canonical and inverted responses have been observed. We investigated the nature of neurovascular coupling in unanesthetized neonatal mice using optical imaging, electrophysiology, and BOLD fMRI. We find in neonatal (postnatal day 15, P15) mice, sensory stimulation induces a small increase in blood volume/BOLD signal, often followed by a large decrease in blood volume. An examination of arousal state of the mice revealed that neonatal mice were asleep a substantial fraction of the time, and that stimulation caused the animal to awaken. As cortical blood volume is much higher during REM and NREM sleep than the awake state, awakening occludes any sensory-evoked neurovascular coupling. When neonatal mice are stimulated during an awake period, they showed relatively normal (but slowed) neurovascular coupling, showing that that the typically observed constriction is due to arousal state changes. These result show that sleep-related vascular changes dominate over any sensory-evoked changes, and hemodynamic measures need to be considered in the context of arousal state changes.


Neurovascular Coupling , Mice , Animals , Neurovascular Coupling/physiology , Animals, Newborn , Cerebrovascular Circulation/physiology , Hemodynamics/physiology , Wakefulness
7.
Brain Struct Funct ; 228(6): 1411-1423, 2023 Jul.
Article En | MEDLINE | ID: mdl-37261489

Sex-related differences can be found in many brain disorders and psychophysiological traits, highlighting the importance to systematically understand the sex differences in brain function in humans and animal models. Despite emerging effort to address sex differences in behaviors and disease models in rodents, how brain-wide functional connectivity (FC) patterns differ between male and female rats remains largely unknown. Here, we used resting-state functional magnetic resonance imaging (rsfMRI) to investigate regional and systems-level differences between female and male rats. Our data show that female rats display stronger hypothalamus connectivity, whereas male rats exhibit more prominent striatum-related connectivity. At the global scale, female rats demonstrate stronger segregation within the cortical and subcortical systems, while male rats display more prominent cortico-subcortical interactions, particularly between the cortex and striatum. Taken together, these data provide a comprehensive framework of sex differences in resting-state connectivity patterns in the awake rat brain, and offer a reference for studies aiming to reveal sex-related FC differences in different animal models of brain disorders.


Brain , Wakefulness , Animals , Female , Male , Rats , Brain/physiology , Brain Mapping , Magnetic Resonance Imaging/methods , Sex Characteristics , Wakefulness/physiology , Brain Diseases
8.
Res Sq ; 2023 Mar 16.
Article En | MEDLINE | ID: mdl-36993730

Sex-related differences can be found in many brain disorders and psychophysiological traits, highlighting the importance to systematically understand the sex differences in brain function in humans and animal models. Despite emerging effort to address sex differences in behaviors and disease models in rodents, how brain-wide functional connectivity (FC) patterns differ between male and female rats remains largely unknown. Here we used resting-state functional magnetic resonance imaging (rsfMRI) to investigate regional and systems-level differences between female and male rats. Our data show that female rats display stronger hypothalamus connectivity, whereas male rats exhibit more prominent striatum-related connectivity. At the global scale, female rats demonstrate stronger segregation within the cortical and subcortical systems, while male rats display more prominent cortico-subcortical interactions, particularly between the cortex and striatum. Taken together, these data provide a comprehensive framework of sex differences in resting-state connectivity patterns in the awake rat brain, and offer a reference for studies aiming to reveal sex-related FC differences in different animal models of brain disorders.

9.
bioRxiv ; 2023 Feb 18.
Article En | MEDLINE | ID: mdl-36824895

In the adult sensory cortex, increases in neural activity elicited by sensory stimulation usually drives vasodilation mediated by neurovascular coupling. However, whether neurovascular coupling is the same in neonatal animals as adults is controversial, as both canonical and inverted responses have been observed. We investigated the nature of neurovascular coupling in unanesthetized neonatal mice using optical imaging, electrophysiology, and BOLD fMRI. We find in neonatal (postnatal day 15, P15) mice, sensory stimulation induces a small increase in blood volume/BOLD signal, often followed by a large decrease in blood volume. An examination of arousal state of the mice revealed that neonatal mice were asleep a substantial fraction of the time, and that stimulation caused the animal to awaken. As cortical blood volume is much higher during REM and NREM sleep than the awake state, awakening occludes any sensory-evoked neurovascular coupling. When neonatal mice are stimulated during an awake period, they showed relatively normal (but slowed) neurovascular coupling, showing that that the typically observed constriction is due to arousal state changes. These result show that sleep-related vascular changes dominate over any sensory-evoked changes, and hemodynamic measures need to be considered in the context of arousal state changes. Significance Statement: In the adult brain, increases in neural activity are often followed by vasodilation, allowing activity to be monitored using optical or magnetic resonance imaging. However, in neonates, sensory stimulation can drive vasoconstriction, whose origin was not understood. We used optical and magnetic resonance imaging approaches to investigate hemodynamics in neonatal mice. We found that sensory-induced vasoconstriction occurred when the mice were asleep, as sleep is associated with dilation of the vasculature of the brain relative to the awake state. The stimulus awakens the mice, causing a constriction due to the arousal state change. Our study shows the importance of monitoring arousal state, particularly when investigating subjects that may sleep, and the dominance arousal effects on brain hemodynamics.

10.
Neuroimage ; 268: 119887, 2023 03.
Article En | MEDLINE | ID: mdl-36681134

Visual stimulation-evoked blood-oxygen-level dependent (BOLD) responses can exhibit more complex temporal dynamics than a simple monophasic response. For instance, BOLD responses sometimes include a phase of positive response followed by a phase of post-stimulus undershoot. Whether the BOLD response during these phases reflects the underlying neuronal signal fluctuations or is contributed by non-neuronal physiological factors remains elusive. When presenting blocks of sustained (i.e. DC) light ON-OFF stimulations to unanesthetized rats, we observed that the response following a decrease in illumination (i.e. OFF stimulation-evoked BOLD response) in the visual cortices displayed reproducible multiple phases, including an initial positive BOLD response, followed by an undershoot and then an overshoot before the next ON trial. This multi-phase BOLD response did not result from the entrainment of the periodic stimulation structure. When we measured the neural correlates of these responses, we found that the high-frequency band from the LFP power (300 - 3000 Hz, multi-unit activity (MUA)), but not the power in the gamma band (30 - 100 Hz) exhibited the same multiphasic dynamics as the BOLD signal. This study suggests that the post-stimulus phases of the BOLD response can be better explained by the high-frequency neuronal signal.


Magnetic Resonance Imaging , Visual Cortex , Rats , Animals , Evoked Potentials, Visual , Neurons/physiology , Visual Cortex/physiology , Photic Stimulation , Oxygen , Brain Mapping
11.
Elife ; 112022 Oct 20.
Article En | MEDLINE | ID: mdl-36263940

Respiration can induce motion and CO2 fluctuation during resting-state fMRI (rsfMRI) scans, which will lead to non-neural artifacts in the rsfMRI signal. In the meantime, as a crucial physiologic process, respiration can directly drive neural activity change in the brain, and may thereby modulate the rsfMRI signal. Nonetheless, this potential neural component in the respiration-fMRI relationship is largely unexplored. To elucidate this issue, here we simultaneously recorded the electrophysiology, rsfMRI, and respiration signals in rats. Our data show that respiration is indeed associated with neural activity changes, evidenced by a phase-locking relationship between slow respiration variations and the gamma-band power of the electrophysiological signal recorded in the anterior cingulate cortex. Intriguingly, slow respiration variations are also linked to a characteristic rsfMRI network, which is mediated by gamma-band neural activity. In addition, this respiration-related brain network disappears when brain-wide neural activity is silenced at an isoelectrical state, while the respiration is maintained, further confirming the necessary role of neural activity in this network. Taken together, this study identifies a respiration-related brain network underpinned by neural activity, which represents a novel component in the respiration-rsfMRI relationship that is distinct from respiration-related rsfMRI artifacts. It opens a new avenue for investigating the interactions between respiration, neural activity, and resting-state brain networks in both healthy and diseased conditions.


What does the brain do when we breathe? Humans and other animals with lungs depend on breathing to supply their cells with oxygen for energy production. Neurons in the brain are supplied oxygen through an intricate system of blood vessels. When active, neurons consume a lot of energy and require a steady supply of oxygen-rich blood. In fact, this relationship between blood vessels and activity of neurons in the brain is so tightly linked that to study neuron activity researchers and clinicians often use an approach called functional magnetic resonance imaging (fMRI) to analyze the flow of oxygenated blood in the brain. This imaging technique allows scientists to map how active different parts of the brain are at any given time without the need for an invasive medical procedure. Unfortunately, fMRI results are affected by the cycles of inhalation and exhalation that take place while breathing, even when an individual is at rest. This is because the rate and depth of respiration can vary, resulting in the body moving unpredictably and in CO2 levels fluctuating in the brain, which can lead to changes in fMRI signals that do not correlate with neuron activity. Such misleading measurements are called 'artifacts'. The assumption that these fMRI results do not represent real brain activity has meant that the effects of breathing on neuron activity in different parts of the brain is poorly understood. To solve this issue, Tu and Zhang performed fMRI on rats and combined the results with measurements of the depth and rate of respiration, and with electrophysiology, an approach that allowed them to directly record the electrical properties of neurons. This allowed them to map out the network of neurons that become active in response to breathing. The results show that breathing leads to a specific fMRI signal that can be distinguished from the artifacts introduced by fluctuating CO2 levels and body movements. The signal correlates with the activity of neurons measured using electrophysiology and with breathing patterns, and it disappears when the electrical activity of neurons in the brain is suppressed, even if the rats are still breathing. This suggests that breathing affects brain activity that is independent of the previously described artifacts. Future studies may focus on how the brain responds to breathing or how respiration itself is controlled by the brain, with the methods developed allowing researchers to explore regions of the brain that increase their activity while breathing. This clears the path towards investigating the neural mechanisms underlying therapies and exercises that focus on breathing.


Brain Mapping , Magnetic Resonance Imaging , Animals , Rats , Rest/physiology , Brain/diagnostic imaging , Brain/physiology , Respiration
12.
J Neural Eng ; 19(6)2022 11 08.
Article En | MEDLINE | ID: mdl-36301683

Objective.The brain network has been extensively studied as a collection of brain regions that are functionally inter-connected. However, the study of the causal relationship in brain-wide functional connectivity, which is critical to the brain function, remains challenging. We aim to examine the feasibility of using (SSFO)-based optogenetic functional magnetic resonance imaging to infer the causal relationship (i.e. directional information) in the brain network.Approach.We combined SSFO-based optogenetics with fMRI in a resting-state rodent model to study how a local increase of excitability affects brain-wide neural activity and resting-state functional connectivity (RSFC). We incorporated Pearson's correlation and partial correlation analyses in a graphic model to derive the directional information in connections exhibiting RSFC modulations.Main results. When the dentate gyrus (DG) was sensitized by SSFO activation, we found significantly changed activity and connectivity in several brain regions associated with the DG, particularly in the medial prefrontal cortex Our causal inference result shows an 84%-100% accuracy rate compared to the directional information based on anatomical tracing data.Significance.This study establishes a system to investigate the relationship between local region activity and RSFC modulation, and provides a way to analyze the underlying causal relationship between brain regions.


Brain Mapping , Magnetic Resonance Imaging , Magnetic Resonance Imaging/methods , Brain Mapping/methods , Optogenetics , Brain/physiology , Neural Pathways/physiology
13.
Neuroimage ; 263: 119628, 2022 11.
Article En | MEDLINE | ID: mdl-36113737

Interactions between the brain and the stomach shape both cognitive and digestive functions. Recent human studies report spontaneous synchronization between brain activity and gastric slow waves in the resting state. However, this finding has not been replicated in any animal models. The neural pathways underlying this apparent stomach-brain synchrony is also unclear. Here, we performed functional magnetic resonance imaging while simultaneously recording body-surface gastric slow waves from anesthetized rats in the fasted vs. postprandial conditions and performed a bilateral cervical vagotomy to assess the role of the vagus nerve. The coherence between brain fMRI signals and gastric slow waves was found in a distributed "gastric network", including subcortical and cortical regions in the sensory, motor, and limbic systems. The stomach-brain coherence was largely reduced by the bilateral vagotomy and was different between the fasted and fed states. These findings suggest that the vagus nerve mediates the spontaneous coherence between brain activity and gastric slow waves, which is likely a signature of real-time stomach-brain interactions. However, its functional significance remains to be established.


Stomach , Vagus Nerve , Humans , Rats , Animals , Stomach/physiology , Vagus Nerve/physiology , Brain/physiology , Vagotomy , Neural Pathways
14.
Neurophotonics ; 9(3): 032208, 2022 Jul.
Article En | MEDLINE | ID: mdl-35350137

Simultaneously manipulating and monitoring both microscopic and macroscopic brain activity in vivo and identifying the linkage to behavior are powerful tools in neuroscience research. These capabilities have been realized with the recent technical advances of optogenetics and its combination with fMRI, here termed "opto-fMRI." Opto-fMRI allows for targeted brain region-, cell-type-, or projection-specific manipulation and targeted Ca 2 + activity measurement to be linked with global brain signaling and behavior. We cover the history, technical advances, applications, and important considerations of opto-fMRI in anesthetized and awake rodents and the future directions of the combined techniques in neuroscience and neuroimaging.

15.
Cereb Cortex ; 32(23): 5311-5329, 2022 11 21.
Article En | MEDLINE | ID: mdl-35179203

A notorious issue of task-based functional magnetic resonance imaging (fMRI) is its large cross-trial variability. To quantitatively characterize this variability, the blood oxygenation level-dependent (BOLD) signal can be modeled as a linear summation of a stimulation-relevant and an ongoing (i.e. stimulation-irrelevant) component. However, systematic investigation on the spatiotemporal features of the ongoing BOLD component and how these features affect the BOLD response is still lacking. Here we measured fMRI responses to light onsets and light offsets in awake rats. The neuronal response was simultaneously recorded with calcium-based fiber photometry. We established that between-region BOLD signals were highly correlated brain-wide at zero time lag, including regions that did not respond to visual stimulation, suggesting that the ongoing activity co-fluctuates across the brain. Removing this ongoing activity reduced cross-trial variability of the BOLD response by ~30% and increased its coherence with the Ca2+ signal. Additionally, the negative ongoing BOLD activity sometimes dominated over the stimulation-driven response and contributed to the post-stimulation BOLD undershoot. These results suggest that brain-wide ongoing activity is responsible for significant cross-trial BOLD variability, and this component can be reliably quantified and removed to improve the reliability of fMRI response. Importantly, this method can be generalized to virtually all fMRI experiments without changing stimulation paradigms.


Brain Mapping , Magnetic Resonance Imaging , Animals , Rats , Reproducibility of Results , Magnetic Resonance Imaging/methods , Brain Mapping/methods , Brain/diagnostic imaging , Brain/physiology , Photic Stimulation , Oxygen
16.
Neuroimage ; 250: 118960, 2022 04 15.
Article En | MEDLINE | ID: mdl-35121182

The blood oxygenation level-dependent (BOLD)-based resting-state functional magnetic resonance imaging (rsfMRI) has been widely used as a non-invasive tool to map brain-wide connectivity architecture. However, the neural basis underpinning the resting-state BOLD signal remains elusive. In this study, we combined simultaneous calcium-based fiber photometry with rsfMRI in awake animals to examine the relationship of the BOLD signal and spiking activity at the resting state. We observed robust couplings between calcium and BOLD signals in the dorsal hippocampus as well as other distributed areas in the default mode network (DMN), suggesting that the calcium measurement can reliably predict the rsfMRI signal. In addition, using the calcium signal recorded as the ground truth, we assessed the impacts of different rsfMRI data preprocessing pipelines on functional connectivity mapping. Overall, our results provide important evidence suggesting that spiking activity measured by the calcium signal plays a key role in the neural mechanism of resting-state BOLD signal.


Calcium/metabolism , Default Mode Network/diagnostic imaging , Default Mode Network/metabolism , Magnetic Resonance Imaging/methods , Animals , Hippocampus/diagnostic imaging , Hippocampus/metabolism , Image Processing, Computer-Assisted , Male , Rats , Rats, Long-Evans
17.
Neuroimage ; 237: 118219, 2021 08 15.
Article En | MEDLINE | ID: mdl-34052466

The architecture of brain networks has been extensively studied in multiple species. However, exactly how the brain network reconfigures when a local region, particularly a hub region, stops functioning remains elusive. By combining chemogenetics and resting-state functional magnetic resonance imaging (rsfMRI) in an awake rodent model, we investigated the causal impact of acutely inactivating a hub region (i.e. the dorsal anterior cingulate cortex) on brain network properties. We found that suppressing neural activity in a hub could have a ripple effect that went beyond the hub-related connections and propagated to other neural connections across multiple brain systems. In addition, hub dysfunction affected the topological architecture of the whole-brain network in terms of the network resilience and segregation. Selectively inhibiting excitatory neurons in the hub further changed network integration. None of these changes were observed in sham rats or when a non-hub region (i.e. the primary visual cortex) was perturbed. This study has established a system that allows for mechanistically dissecting the relationship between local regions and brain network properties. Our data provide direct evidence supporting the hypothesis that acute dysfunction of a brain hub can cause large-scale network changes. These results also provide a comprehensive framework documenting the differential impact of hub versus non-hub nodes on network dynamics.


Brain/physiology , Connectome , Magnetic Resonance Imaging , Nerve Net/physiology , Neuronal Plasticity/physiology , Animals , Male , Models, Theoretical , Rats , Rats, Long-Evans , Reproducibility of Results
18.
Cereb Cortex ; 31(9): 3986-4005, 2021 07 29.
Article En | MEDLINE | ID: mdl-33822908

The brain exhibits highly organized patterns of spontaneous activity as measured by resting-state functional magnetic resonance imaging (fMRI) fluctuations that are being widely used to assess the brain's functional connectivity. Some evidence suggests that spatiotemporally coherent waves are a core feature of spontaneous activity that shapes functional connectivity, although this has been difficult to establish using fMRI given the temporal constraints of the hemodynamic signal. Here, we investigated the structure of spontaneous waves in human fMRI and monkey electrocorticography. In both species, we found clear, repeatable, and directionally constrained activity waves coursed along a spatial axis approximately representing cortical hierarchical organization. These cortical propagations were closely associated with activity changes in distinct subcortical structures, particularly those related to arousal regulation, and modulated across different states of vigilance. The findings demonstrate a neural origin of spatiotemporal fMRI wave propagation at rest and link it to the principal gradient of resting-state fMRI connectivity.


Brain/physiology , Cerebral Cortex/physiology , Adult , Animals , Arousal/physiology , Brain/diagnostic imaging , Brain Mapping , Cerebral Cortex/diagnostic imaging , Cerebrovascular Circulation , Electroencephalography , Female , Humans , Macaca mulatta , Magnetic Resonance Imaging , Male , Multimodal Imaging , Nerve Net/diagnostic imaging , Nerve Net/physiology , Species Specificity , Young Adult
19.
PLoS One ; 16(1): e0244847, 2021.
Article En | MEDLINE | ID: mdl-33428638

Obesity is associated with significant comorbidities and financial costs. While behavioral interventions produce clinically meaningful weight loss, weight loss maintenance is challenging. The objective was to improve understanding of the neural and psychological mechanisms modified by mindfulness that may predict clinical outcomes. Individuals who intentionally recently lost weight were randomized to Mindfulness-Based Stress Reduction (MBSR) or a control healthy living course. Anthropometric and psychological factors were measured at baseline, 8 weeks and 6 months. Functional connectivity (FC) analysis was performed at baseline and 8 weeks to examine FC changes between regions of interest selected a priori, and independent components identified by independent component analysis. The association of pre-post FC changes with 6-month weight and psychometric outcomes was then analyzed. Significant group x time interaction was found for FC between the amygdala and ventromedial prefrontal cortex, such that FC increased in the MBSR group and decreased in controls. Non-significant changes in weight were observed at 6 months, where the mindfulness group maintained their weight while the controls showed a weight increase of 3.4% in BMI. Change in FC at 8-weeks between ventromedial prefrontal cortex and several ROIs was associated with change in depression symptoms but not weight at 6 months. This pilot study provides preliminary evidence of neural mechanisms that may be involved in MBSR's impact on weight loss maintenance that may be useful for designing future clinical trials and mechanistic studies.


Amygdala/physiology , Mindfulness , Nerve Net/physiopathology , Stress, Psychological/physiopathology , Stress, Psychological/psychology , Weight Loss , Adult , Amygdala/diagnostic imaging , Body Mass Index , Female , Humans , Magnetic Resonance Imaging , Male , Nerve Net/diagnostic imaging , Pilot Projects , Stress, Psychological/diagnostic imaging
20.
Neuroimage ; 225: 117463, 2021 01 15.
Article En | MEDLINE | ID: mdl-33075559

The brain undergoes a protracted, metabolically expensive maturation process from childhood to adulthood. Therefore, it is crucial to understand how network cost is distributed among different brain systems as the brain matures. To address this issue, here we examined developmental changes in wiring cost and brain network topology using resting-state functional magnetic resonance imaging (rsfMRI) data longitudinally collected in awake rats from the juvenile age to adulthood. We found that the wiring cost increased in the vast majority of cortical connections but decreased in most subcortico-subcortical connections. Importantly, the developmental increase in wiring cost was dominantly driven by long-range cortical, but not subcortical connections, which was consistent with more pronounced increase in network integration in the cortical network. These results collectively indicate that there is a non-uniform distribution of network cost as the brain matures, and network resource is dominantly consumed for the development of the cortex, but not subcortex from the juvenile age to adulthood.


Brain/growth & development , Neural Pathways/growth & development , Amygdala/diagnostic imaging , Amygdala/growth & development , Animals , Brain/diagnostic imaging , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/growth & development , Corpus Striatum/diagnostic imaging , Corpus Striatum/growth & development , Functional Neuroimaging , Globus Pallidus/diagnostic imaging , Globus Pallidus/growth & development , Hippocampus/diagnostic imaging , Hippocampus/growth & development , Hypothalamus/diagnostic imaging , Hypothalamus/growth & development , Longitudinal Studies , Magnetic Resonance Imaging , Neural Pathways/diagnostic imaging , Rats , Rest , Sensorimotor Cortex/diagnostic imaging , Sensorimotor Cortex/growth & development , Thalamus/diagnostic imaging , Thalamus/growth & development
...